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DESCRIPTION OF MAP UNITS*

Unconsolidated fine- to very coarse-grained sand and minor gravel alluvium of the Rio San Ignacio

Unconsolidated sand and gravel alluvium

Unconsolidated gravel colluvium consisting of pebbles to boulders of variegated volcanic clasts, except in the Cerro 
Las Burras and Cerro Prieta where clasts are only basalt. Typically confined to slopes near steep topography. 

Dissected, subhorizontally stratified pebbly sandstone and clast-supported sandy pebble conglomerate with local 
primary dip of up to 8° in the eastern Sierra Tordilla. Gravel fraction consists of mostly subangular to rounded 
pebbles, sparse cobbles, and rare boulders up to 90 cm in diameter.  Bedsets are 7 to 35 cm thick and defined by 
mostly massive, clast-supported, pebble-rich beds lacking sedimentary structures except rare channel scour and 
upper plane-bed stratification. The clast assemblage is polymict consisting of volcanic (56%) and granitic and     
metamorphic clasts (44%). This unit is interpreted as widespread, locally derived debris flows and alluvium that cover 
and obscure older pre- and syn-extensional strata. Maximum exposed thickness is approximately 160 m.

Mostly massive, moderately sorted, volcaniclastic, pebble-cobble conglomerate and interbedded pebbly sandstone. 
This unit has mixed matrix- and clast-support and rare boulders up to 50 cm in diameter. The clast assemblage is 
heterolithic with angular to subrounded volcanic and basement clasts in a grussy, red sand matrix. This unit is      
characterized by bedding dips that decrease systematically up-section from about 39° to 0°, which is best exposed in 
the hanging wall of the concealed Noriega fault just east of the Cerro Pelón. In addition to the fanning dips, this unit 
has a significantly higher percentage of tonalite, metasedimentary, and metavolcanic clasts which further distinguish it 
from Tc2.

BASALT OF ARIVAIPA - Horizontal to sub-horizontal, 10- to 15-m-thick basalt flows containing plagioclase micro-
phenocrysts in a fine-grained aphanitic groundmass consisting of plagioclase >> olivine ≈ pyroxene ≈ magnetite. 
Individual flows contain a 1- to 3-m-thick red to black basal flow breccia, vesicular upper and lower contacts, and
well-defined vertical joints with 0.5 m-spacing. Gastil and Krummenacher (1977) obtained a radiometric age of 
6.4 ± 1.9 Ma [K-Ar] for this unit where it dips shallowly to the northeast in the Cerro Prieta above an angular 
unconformity with older late Miocene volcanic strata. Maximum exposed thickness is 90 m.

Stratified to massive, pebbly sandstone to sandy pebble conglomerate and interbedded pebble-cobble conglomerate. 
Heterolithic clast assemblage includes andesite, dacite, basalt, rhyolite, and granitic and metamorphic basement 
lithologies. In the western Cerro Colorado, this unit shows locally well-developed planar stratification and mixed 
matrix- and clast-support in 5- to 15-cm-thick, and mostly subangular to subrounded intermediate volcanic clasts with 
less common basement clasts and outsized boulders up to 35 cm in diameter. In the Lomas Ona-Jeco (southeastern 
map area), this unit is mostly massive with local planar stratification of 20- to 50-cm-thick bedsets defined by       
variations in grain size. This unit is interpreted to be pre-kinematic based on its consistent dip with underlying units 
throughout the study area. The Tuff of Desemboque (Ttd, 10.4 Ma) is interbedded in the upper part of this unit. Total 
unit thickness is up to 350 m.

TUFF OF DESEMBOQUE - Pink to white, welded rhyolite ash-flow tuff. The base is characterized by a 0.5- to 1-m-
thick, discontinuous, porphyritic black vitrophyre overlain by a 5-m-thick pink, ashy crystal-rich zone; both of these 
ones contain abundant euhedral phenocrysts (plagioclase > quartz > biotite > alkali feldspar). The base grades 
upward into a 10- to 15-m-thick, moderately to densely welded zone with abundant 4- to 12-cm-long yellow pumice 
fiamé and 10-15% phenocrysts (feldspar > biotite ≈ quartz). The upper 30 m show extensive vapor phase alteration 
and abundant quartz-filled spherules in a pink groundmass that decrease in abundance upsection. The uppermost 
part of the unit is gray to white and not welded. Gastil and Krummenacher (1977) determined an age of 10.4 ± 0.2 Ma 
[K-Ar] for this unit, which they report as an unnamed rhyolite tuff (their sample S2G-114A). Total unit thickness is 
40 to 50 m. 

Thick sequence of dark purple to black, aphanitic vesicular basalt flows with only up to 1-2% plagioclase phenocrysts 
in a glassy groundmass. Total exposed thickness up to 1100 m.

Gray to light purple, aphanitic rhyolite lava flows. Gray lenses with glassy or frothy textures create a locally well-
defined flow foliation. Secondary quartz precipitation along foliation is pervasive in some locations. This resistant unit 
consists of one or two 60- to 90-m-thick flows. The base of each flow contains a unique pink to red to white ash-fall 
tuff below a discontinuous 1- to 3-m-thick, greenish-black vitrophyre. An unpublished age of 11.7 ± 0.2 Ma [Ar/Ar] has 
been determined for this unit (A. Iriondo, personal communication, 2011). Total unit thickness is up to 240 m.

Light gray-purple, rubbly, vesicular basaltic-andesite lava flow with up to 10-20% altered red pyroxene phenocrysts. 
This unit only occurs in the Cerro Prieta. Total unit thickness is 45 m.

Black, glassy, plagioclase-phyric basalt flows with up to 10% phenocrysts (plagioclase > orthopyroxene >> amphi-
bole) and cindery pyroclastic breccias up to 5 m thick. Individual flows are typically 10 to 20 m thick. Total unit      
thickness is up to 210 m.

Well-laminated lithic tuff and tuffaceous sandstone with yellow to white to light green pumice and dark volcanic lithics 
in a yellow ashy matrix. Individual beds are 30 to 100 cm thick and show normal grading of pumice and lithics. Total 
unit thickness is up to 25 m.

Gray trachydacite lava flows containing 10-15% altered phenocrysts (plagioclase > alkali feldspar ≈ amphibole >> 
apatite). Exposures of this unit are rare and discontinuous in the central and eastern study area. Total unit thickness 
is up to 430 m.

Pink, porphyritic trachydacite lava flows containing up to 15% phenocrysts of feldspar (up to 5 mm long) and 
accessory quartz and biotite. Flows commonly display a non-planar, distorted flow foliation. The base of each lava 
flow consists of a 1- to 10-m-thick yellow ash-fall tuff, which is usually overlain by a discontinuous 1- to 3-m-thick 
vitrophyre. Individual flows are up to 130 m thick. Total unit thickness is up to 650 m.

Black, aphanitic basaltic-andesite lava flows containing rare lath-shaped plagioclase phenocrysts up to 2 mm long 
and vesicles commonly filled with white or yellow zeolite. Microlitic groundmass consists of plagioclase and altered 
pyroxene; no olivine is observed. This unit is well exposed ~3 km south of Pozo Coyote where it is intercalated with  
2- to 3-m-thick red tuffaceous sandstones and pyroclastic breccias.  An isochron age of 11.76 ± 0.08 Ma [Ar/Ar] was 
determined for this unit (Darin, 2011). Total unit thickness is up to 240 m.

Purple to gray, aphanitic trachydacite lava flows containing up to 5% blocky sanidine and plagioclase phenocrysts 
and accessory pyroxene in a microlitic plagioclase groundmass. Like Td1, this unit consists of multiple 20- to 60-m-
thick flows with 1- to 4-m-thick red basal flow breccias in the Cerro Colorado.  This unit commonly displays a well-
defined 1- to 4-cm-spaced flow foliation, which helps to distinguish it from Td1. Total unit thickness is up to 330 m.

Stony, purple-gray, aphanitic trachydacite lava flows with <2% altered sanidine phenocrysts and accessory pyroxene 
in a microlitic plagioclase groundmass. In the Cerro Colorado, this unit consists of multiple ~20- to 60-m-thick flows 
each containing a 1- to 4-m-thick reddish (oxidized) basal flow breccia. Individual flows are separated by 2- to 3-m-
thick beds of yellow to green tephra in the northern Cerro Colorado. Total unit thickness is 80 to 300 m.

TUFF OF CERRO PRIETA - Pink, densely welded trachydacite tuff with a 1- to 2-m-thick basal vitrophyre, eutaxitic 
foliation defined by flat recrystallized pumice fiamé, and 10 to 15% phenocrysts (sanidine > biotite > quartz). This unit 
bears a slight resemblance to the Tuff of San Ignacio (Ttsi) in both mineralogy and the abundance of spherules in the 
vapor phase alteration zones. However, this unit overlies both Td1 and Ttsi, has a higher abundance of phenocrystic 
quartz and biotite, and has a distinctly different bulk geochemical signature (Darin, 2011). 

TUFF OF SAN FELIPE - Maroon to brown to orange, densely welded tuff containing abundant yellow to white 
pumice, 10-15% anorthoclase phenocrysts, rare zoned pyroxene, and absolutely no phenocrystic quartz. Abundant 
flattened pumice fiamé reach lengths of up to 25 cm and form a well-defined eutaxitic foliation. Trachyte-rhyolite 
inclusions containing abundant alkali feldspar in a dark glassy groundmass are a common diagnostic feature of this 
unit. This unit is a well-documented and regionally extensive rhyolite ignimbrite exposed over an area of greater than 
4,000 km² in northern Baja California and Sonora, Mexico that serves as a key stratigraphic marker and geologic 
tie-point across the Gulf of California (e.g., Stock et al., 1999; Oskin et al., 2001; Oskin and Stock, 2003a). Bennett et 
al. (2013) report a high-precision age of 12.50 ± 0.08 Ma [Ar/Ar] for this unit. It is only exposed in two localities within 
the study area, representing the northernmost identified outcrops of the Tuff of San Felipe on the eastern rifted 
margin of the Gulf of California. Northeast of El Desemboque, the unit is ~25 to 70 m thick with a thin (<1 m) 
discontinuous black vitrophyre. The lower densely welded, fiamé-rich member (20 to 40 m thick) grades upward into 
a non-welded zone with intact, undeformed pumice (5 to 30 m thick). 

TUFF OF SAN IGNACIO - Bright pink to white or orange, ashy, crystal-poor, spherulitic rhyolite ash-flow tuff. This unit 
contains uncommon cm-scale, white to pink pumice fiamé and unique subrounded to angular, vesicular, plagioclase-
phyric andesite lithics with an average diameter of 1 cm (max. 5 cm). Abundant 0.5- to 3-cm-diameter quartz-filled 
spherules and lithophysae in a pink to white, ashy groundmass are especially diagnostic of this tuff and pervasive 
throughout the vapor-phase alteration zone. Very rare small pumice fragments and partially dissolved potassium 
feldspar, quartz, and biotite phenocrysts are also observed. The base is commonly a 1- to 5-m-thick, dense black to 
brown vitrophyre with rare feldspar micro-phenocrysts. A 0.5- to 1.5-m-thick, orange to brown, laminated basal surge 
deposit in the central and southern Cerro Colorado locally contains abundant subrounded tonalite (Kt) pebbles and 
cobbles. The basal unit is overlain by a 5- to 8-m-thick, pink to orange, crystal- and lithic-rich welded zone with 
uncommon phenocrysts (quartz >> feldspar > biotite). The welded zone grades upward into a spherulitic, partially 
welded zone of vapor-phase alteration 10 to 30 m thick in most exposures. Internal rheomorphic flow deformation in 
the form of disharmonic folds and recrystallized pumice fiamé is characteristic of this unit in the Cerro Las Burras.  
Flow-banding is densely-spaced (<1 cm) and rheomorphism is local and irregularly distributed within the unit; pumice 
lineations show various degrees of deformation, with some stretched up to 30 cm long (1:50 aspect ratio).  A high 
precision age of 12.56 ± 0.09 Ma [U-Pb] has been determined for this unit (Darin, 2011). Typical unit thickness is 20 to 
40 m; maximum thickness is 350 m in the Cerro Las Burras.

TUFF OF ARIVAIPA - Deep maroon to red, partially welded, crystal- and lithic-rich rhyolite tuff only exposed in the 
Cerro Las Burras. Up to 5% quartz and plagioclase phenocrysts and undeformed yellow, ashy pumice are diagnostic 
of this tuff. This unit contains a 1- to 4-m-thick, white to red breccia at its base, which grades upward into a partially 
welded lithic-rich zone containing 15% brown, red, purple, and black, subangular volcanic lithics and rare granitic 
xenoliths. The upper 2 to 3 m of the unit are nonwelded and contain abundant yellow and white pumice clasts with no 
phenocrysts. A white, discontinuous, ashy, quartz-rich layer up to 10 m thick is observed approximately 30 m below 
the top of the unit. Total unit thickness is 50 to 80 m.

Indurated, glassy basalt flows containing up to 10% altered olivine and subordinate pyroxene phenocrysts. Total unit 
thickness is up to 40 m.

Densely foliated rhyolite flow containing up to 5% phenocrysts (quartz ≈ sanidine > feldspar) in a pink to purple 
groundmass. Found only in the Cerro Colorado. Maximum unit thickness is 50 m.

Massive, poorly sorted, volcaniclastic pebble-cobble conglomerate and breccia with a gray, ashy matrix. This unit has 
a monolithologic assemblage of clasts from underlying dacite flows and tuffs (Tdf, Tdt) in the northwestern study area. 
Virtually all clasts are porphyritic dacite, which is diagnostic of this unit. Total unit thickness is up to 750 m.

Monolithologic, lithic-rich dacite tuffs with subordinate interbedded tuff breccias and dacite lava flows (Tdf). Tuffs and 
breccias have a nearly homogeneous composition of porphyritic dacite (Tdf) clasts. The matrix is ashy and varies 
from yellow, orange, and white to pink. Outcrops are typically hard and non-friable. This unit is interpreted as a 
proximal to medial dacite stratovolcano facies. Typical unit thickness is 100 to 200 m, with a maximum of 660 m.

Porphyritic dacite lava flows with abundant diagnostic euhedral plagioclase phenocrysts (10 to 20%) up to 6 mm long, 
sub- to euhedral biotite (2 to 5%) and quartz (2 to 5%) phenocrysts in a gray to red groundmass. Locally exposed 
basal flow breccias are up to 3 m thick. Intercalated with Tdt in the Sierra Bacha and Sierra Tordilla. Total unit thick-
ness is up to 270 m.

Purple, aphyric peraluminous trachyandesite flows containing 1 to 2% microlitic plagioclase and probable pyroxene in 
an aphanitic groundmass. Some flows contain a 1- to 2-m-thick red basal flow breccia. Dikes of similar composition 
and agglomeritic breccia zones are common in the southwesternmost Cerro Colorado. A similar aphyric andesite flow 
is also observed just west of the Cerro Pelón in the hanging wall strata of the Bacha fault. Total unit thickness is up to 
330 m.

Gray to purple, plagioclase-phyric, peraluminous vesicular basaltic-trachyandesite lava flows. Locally abundant 
vesicles are commonly filled with white to yellow zeolite. Exposures are typically weathered and rubbly. The age of 
this unit is partly constrained by the interbedded Tuff of Cerro Colorado (Ttc, 14.5 Ma). Total unit thickness is up to 
290 m.

TUFF OF CERRO COLORADO - Yellow to red, crystal-lithic rhyolite tuff. This unit either directly overlies the 
basement nonconformity or is interbedded within Ta1 throughout most of the Cerro Colorado. The base contains a 2- 
to 8-m-thick, yellow to orange, nonwelded member with yellow, red, and purple tephra and subangular volcanic lithics, 
grading upward into a brick-red, partially welded crystal-lithic tuff with up to 5% yellow and gray pumice and up to 
10% phenocrysts (quartz > feldspar). Locally this unit contains multiple cooling units several meters thick and/or a 
purple densely welded upper member with significantly less pumice and smaller lithic fragments. The uppermost 
welded members form resistant ridges flanked by colorful talus slopes on both sides. A maximum eruption age of 
14.5 ± 0.3 Ma [U-Pb] has been determined for this unit (Darin, 2011). Total unit thickness is 10 to 40 m.

Gray to light purple rhyodacite flows (Tr) with 5 to 15% phenocrysts (quartz > plagioclase >> biotite) and 
compositionally similar rhyolitic breccias (Trb) found only in the Cerro Las Burras. Total unit thickness is up to 1100 m.

Thin, discontinuous exposures of indurated, glassy basalt flows. Some flows have an aphanitic texture while others 
contain up to 10% phenocrysts, including altered olivine, pyroxene, and less common plagioclase. Total unit thickness 
is up to 60 m.
 
Red to orange, massive to laminated, fine- to coarse-grained sandstone consisting of moderately sorted, subangular 
to subrounded grains of quartz >> alkali feldspar ≈ biotite, and up to 10% red lapilli locally. Overall grussy composition 
resembling the underlying granitic basement units. Typically found in depositional contact with Mesozoic basement 
units or intercalated with Ta1. Typical unit thickness is 1 to 3 m, with a maximum of 15 m.

 

Undifferentiated conglomerate (Tcu), rhyolite lava- and ash-flows (Tru), and rhyolite ash-fall tuffs (Ttu). Ttu is yellow to 
white to pink, nonwelded to welded, thinly laminated tuffs with an ashy, quartz-rich matrix, volcanic lithics, and up to 
10% euhedral phenocrysts of plagioclase, biotite, quartz, and sanidine. Individual tuffs are up to 20 m thick.

Well-stratified, clast-supported pebble-cobble conglomerate and interbedded pebbly sandstone. Conglomerate beds 
contain a white to red granular, grussy matrix and sparse boulders up to 60 cm in diameter. Well to very well rounded 
clasts include quartzite, tonalite, chert, limestone, and various metamorphic lithologies along with subordinate 
volcanic clasts. This unit is correlated with the distinctive conglomerate unit of Gastil et al. (1973) and Bryant (1986) 
based on the exotic clast assemblage, the presence of similarly unique Permian limestone clasts containing fusulinid 
and gastropod fossils, and proximity to previously mapped outcrops along strike to the southeast in the Sierra Seri 
(Gastil & Krummenacher, 1976). Correlatable outcrops in Baja California are overlain by and intercalated with 
volcanic flows as old as ca. 20-21 Ma (Lewis, 1994; Stock, 1989); additional stratigraphic constraints on Baja (e.g., 
Dorsey & Burns, 1994; Oskin & Stock, 2003b) suggest an Oligocene to middle Miocene age for this unit.

Medium- to coarse-grained tonalite (Kt), granodiorite (Kgd), granite (Kg), and quartz diorite (Kd). Kt is composed of 
plagioclase > quartz > biotite >> alkali feldspar, and contains locally abundant metasedimentary enclaves typical of 
S-type granites formed from sedimentary protoliths. Kgd is composed of plagioclase > quartz > alkali feldspar ≈ 
biotite. Kg contains microcline megacrysts up to 3 cm in length and quartz > alkali feldspar >> biotite ≈ plagioclase;
it is only found in the central study area as 10- to 30-m-thick dikes and a single concentric pluton that forms a 
prominent peak in the Cerro Pelón, where cross-cutting relationships and the presence of tonalite xenoliths within Kg 
indicate that it postdates emplacement of Kt. Kd consists of fine- to medium-grained quartz diorite containing 
plagioclase > amphibole ≈ biotite > quartz ± orthopyroxene; it is only present as a single intrusion in the Sierra 
Tordilla. A Late Cretaceous age has been assigned to these units based on radiomentric ages from proximal areas 
with similar lithologies representing the coastal Sonora batholith (Gastil et al., 1974; Gastil and Krummenacher, 1977; 
Ramos-Velázquez et al., 2008).  

Mostly black to gray, low-grade hornfels facies metasedimentary rocks (Mzs) with a coarse-grained to granular 
texture and abundant primary quartz and secondary muscovite. Metavolcanics (Mzv) include dense, glassy black 
basalt and andesite(?) flows commonly containing plagioclase and amphibole phenocrysts and showing a streaky 
black and white schistosity locally. Metacarbonates (Mzc) consist primarily of 5- to 25-cm-thick beds of low-grade 
meta-limestone and intercalated calcite-cemented sandstone; this unit contains 1- to 3-cm-long unidentified, 
fragmentary, silicified fossils(?) with both cylindrical and 4- to 6-sided prismatic/angular forms that are very rare, but 
locally abundant in densely packed layers up to 10 cm thick (29.52353°N, 112.31983°W). Low-grade metamorphism 
is likely the result of contact metamorphism during emplacement of the Late Cretaceous coastal Sonora batholith 
(Ramos-Velázquez et al., 2008); protolith ages are inferred to be Mesozoic, although older ages are possible. 

Very fine-grained quartzite. Outcrops are usually weathered and rubbly. Only exposed in one locality, just southwest 
of Pozo Coyote. This lithology is not observed elsewhere in Mesozoic strata of Sonora, leading some to interpret it as 
an unusual facies of Paleozoic strata west of the miogeoclinal margin (Gastil and Krummenacher, 1977; Stewart and 
Poole, 2002).  

*Petrologic descriptions of volcanic units are based on a combination of whole-rock geochemical analysis, petrography, and 
texture. Geochemical data are presented in Darin (2011).
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